
Towards Trojan-Free Trusted ICs: Problem Analysis and Detection Scheme

Francis Wolff, Chris Papachristou, Swarup Bhunia, Rajat S. Chakraborty
Case Western Reserve University

Cleveland, Ohio 44106, USA
{fxw12,cap2,skb21,rsc22}@case.edu

Abstract

There have been serious concerns recently about the secu-
rity of microchips from hardware trojan horse insertion dur-
ing manufacturing. This issue has been raised recently due
to outsourcing of the chip manufacturing processes to reduce
cost. This is an important consideration especially in critical
applications such as avionics, communications, military, in-
dustrial and so on. A trojan is inserted into a main circuit at
manufacturing and is mostly inactive unless it is triggered by
a rare value or time event; then it produces a payload error
in the circuit, potentially catastrophic. Because of its nature,
a trojan may not be easily detected by functional or ATPG
testing. The problem of trojan detection has been addressed
only recently in very few works. Our work analyzes and for-
mulates the trojan detection problem based on a frequency
analysis under rare trigger values and provides procedures to
generate input trigger vectors and trojan test vectors to detect
trojan effects. We also provide experimental results.

1. Introduction

The trust issue is an emerging problem in semiconductor
integrated circuit (IC) security. This issue has been raised
recently due to outsourcing of the chip manufacturing pro-
cesses to reduce cost. This may create a major risk for semi-
conductor systems in critical applications such as commu-
nications, space, military and nuclear facilities. The prob-
lem appears from the loss of control that traditional semi-
conductor industry used to have of the manufacturing cy-
cle. It is becoming common practice for the design cycle
to be done far away from manufacturing and electronically
transferring GDS II files to outsourced fabrication facilities.
In one such attack, a trusted design can be tampered in an
untrusted fabrication facility with the insertion of malicious
circuitry that triggers a malfunction conditionally. This ma-
licious circuitry, referred to as a hardware trojan, can trigger
and affect normal circuit operation, potentially with catas-
trophic outcome.

For a trojan circuit to be effective, from the attacker’s
viewpoint, a) it should be triggered under rare events or con-
ditions, b) it should not be easily detected by regular testing,
both functional and ATPG. The trojan detection problem is
different from test problem because the trojan effects can not
be modeled directly as traditional digital circuit faults. Ap-

parently, there will be a need for trojan detection models,
methods and techniques to alleviate this emerging trust issue
of semiconductor ICs especially in critical applications. This
need has provided the main motivation for this work.

There are two aspects in the trojan mechanism, the input
trigger and the output payload. Normally, a trojan is invis-
ible to the circuit operation, meaning triggering is inactive
with no payload effect. Under certain conditions or events,
the trojan is activated (triggered) and then the payload injects
an error that may be latched at the circuit output. There are
three categories of trojan triggering: 1) rare value triggered;
2) time-triggered and 3) both time and value triggered. The
focus of our work is on rare value type of triggering tro-
jans. Our work is two fold. First, we analyze and investigate
the trojan effect. Second, we formulate the trojan detection
problem based on a frequency analysis of rare values and
provides procedures to generate input trigger vectors and tro-
jan test vectors to detect trojan effects.

The rest of the paper is organized as follows. In Sec-
tion 2 we discuss related works. In Section 3 we discuss the
classification of the trojan circuits and provide examples of
different trojan types. A trojan vector generation scheme to
detect combinational trojans is presented in Section 4 along
with trojan coverage results for combinational benchmarks
in Section 5. Section 6 concludes the paper.

2. Background

The problem of TRUST in ICs is fundamentally differ-
ent from the side-channel attack or scan-chain based attack
approaches [2, 4, 5] where the hacker tries to externally de-
cipher a secret key embedded internally in the secured chip,
by analyzing a measured physical parameter, the so called
“side-channels” such as power, temperature and electromag-
netic profiles. In the case of TRUST in ICs, the hacker has
internal access to the IC manufacturing facilities and tries to
disrupt or compromise the normal functionality of the IC in
the field. Furthermore, the hacker will only modify a small
random sample of chips in the production line, making it dif-
ficult to apply reverse engineering techniques [3] as a general
solution. Also, by using a small sample, it becomes difficult
to distinguish between chip failure in the field or trojan in-
sertion.

In [1], the authors apply the concept of IC “fingerprints”
to compare the characteristics of a suspected IC from a par-

978-3-9810801-3-1/DATE08 © 2008 EDAA

1362

ticular family to the fingerprint of that family either in origi-
nal form or in processed form. They apply power signals as
the side channel and the processed power trace as the point
of comparison. However, this method of trojan detection has
its limitations in modern nano-scale technology based ICs,
where the amount of parameter variation can be much more
than ±7.5%. Also, in more sophisticated ICs such as micro-
processors, the amount of area that the trojan circuit occu-
pies might be much smaller than 0.01%, and as a result, their
effect on the measured physical quantity such as power or
supply current might be too small to be detectable.

In [6], the authors propose “physical unclonable func-
tions” for device authentication and secret key generation,
which takes advantage of the random variations in an IC fab-
rication process. The key is generated from complex physi-
cal characteristics of each physical instance of an IC, and is
thus extremely difficult to predict or extract. However, this
approach is not completely suitable for trojan detection be-
cause it does not prevent the insertion of trojan circuitry in
the IC and causes unacceptable hardware overhead to obtain
good levels of security.

In [7], a digital design flow based on the use of “Wave Dy-
namic Differential Logic” which have a reduced current sig-
nature at the cost of more area overhead. This does not pre-
vent the insertion or detection of additional trojan circuitry
in the design.

3. Trojan Examples and Taxonomy

A trojan circuit must be hard to detect during chip test-
ing and normal use. The basic model of a trojan circuit can
be broken down into two major components: (a) Triggering
and (b) Payload activation logic. The triggering logic moni-
tors a set of q-external inputs (q-trigger) in order to activate
the payload at the proper event. Triggering should only oc-
cur under very rare conditions. This is a critical property
to minimize detection. To achieve minimal activation, the
hacker could make the trojan triggering conditionally depen-
dent on nodes with low controllability. The hacker is also
likely to make the trojan affect nodes which are less observ-
able (e.g. the write enable signal for the memory, set/reset
signals for the state elements, etc.). Similarly, from the de-
signer’s point of view, any design technique targeted towards
detecting the trojan circuit should be able to control the oth-
erwise low-controllable nodes and be able to observe the
low-observable nodes easily. In the next section we discuss a
technique for trojan test detection based on a low frequency
triggering model.

In order to evade detection during chip testing, for ex-
ample, the triggering logic can exploit the test enable (TE)
control line to disable the trojan. This is why scan-based
designs cannot improve the security and functional testing
must be involved.

Once triggering has occurred, the trojan becomes acti-
vated and delivers a payload to p-external circuit nodes (p-
Payload). This payload can be either destructive or non-

1P

.

Cut

.

Stitch

1q

.
q

q2

WEWE

q

q−Trigger p−Payload

Rare Value

Figure 1. A trojan model

destructive. A destructive situation would be to enable the
memory write signal (WE) unexpectedly and thereby over-
write an existing value with a random value as shown in Fig-
ure 1. A non-destructive case would be to enable superuser
privilege mode while in normal user mode. This is not di-
rectly destructive to the chip’s basic operation, but it is at the
software operating system level.

Even without a TE signal, test set vectors are not a suf-
ficient condition in discovering trojan circuits. Figure 2a
shows the designer’s intention of waking-up a powered down
circuit when a interrupt occurs. The single stuck fault (SSF)
test set generated for the AND gate only covers three cases
of the truth table’s logic. The gaps in the test vectors are op-
portunities for hacking. In Figure 2b, the hacked circuit of
2a, uses the missing test case of {00} to modify the truth ta-
ble of the AND gate. The activation of the payload results in
consuming excessive battery energy by preventing the circuit
from going to sleep mode.

(b) Hacked Circuit, Passes s−a−f test

WAKEUP6

IRQ6

MSKINTL

MSKINTL

IRQ6

Trigger={00} Payload

WAKEUP6

(a) AND gate, TestSet={01,10,11}

Figure 2. Trojan Circuit evading Single Stuck Fault testing

One might consider exhaustive testing by using 2n+m test
vectors for n-inputs and m-flipflops might be sufficient for
detecting trojan circuits. Figure 3 shows a Time Bomb as a
counterexample to using exhaustive testing. Neither the De-
signer nor the Tester is aware that extra state-machine logic
has been slipped in between an error status signal (ER). The
k-bit counter is always set longer than the test application
time. The tester has no way of knowing what k is without
physically destroying the chip. The Time Bomb increases

1363

the number of exhaustive test vectors from 2n+m to 2n+m+k

where k is unknown. Thus, for a combinational logic only
trojan, the detection problem is decidable but NP-complete.
For a state-machine based trojan circuit, the detection prob-
lem is undecidable. An extension of the rare value is a rare
sequence of values in which a particular ordered sequence
of rare values triggers the trojan circuit. Furthermore, each
of these sequences can be delayed by using a time bomb be-
tween the sequences.

ERER

k−bit Counter

Payload
2 CLK

q

q
1

2−trigger

Figure 3. The Time Bomb

In general, trojan circuits can be classified by the nature
of their trigger and payload mechanisms, as shown in Fig. 4.
The trigger mechanism can be digital or analog based. An
example of a mixed analog-digital trigger consists of using
an on-die temperature sensor which triggers at a high temper-
ature in conjunction with a parity error. Furthermore, a trig-
ger can be delayed by a k-bit synchronous or asynchronous
counter. Asynchronous designs are more difficult to detect,
consuming power only when they change state.

The payload mechanism can also be digital or analog
based. Digital payloads consist of altering a control, status,
or data line. Analog payloads can result in increasing tog-
gling activity resulting in faster battery drains in low poor
designs. Other payloads, such as increasing the signal delay,
or inserting bridging faults. Only rare value digital trojan
circuits are considered in this paper.

Trigger

Trojan

Digital
Digital

Analog

Asynchronous

Synchonous

Rare
Sequences

k−bit Delay

Rare Values

Bridging

Payload

Activity

Leakage

Analog

sensors

On−die
Delay

Figure 4. Trojan Circuit Taxonomy

4. Trojan Detection Approach

In this section we discuss trojan models and procedures
to generate trojan detection vectors. Our trojan circuit model
is shown in Fig. 5. Although this trojan has 2 inputs and
one output, generally a trojan may have q ≥ 1 trigger inputs

q1, q2, · · · and p ≥ 1 payload outputs p1, p2, · · · . Without
loss of generality, we will use the 2-input 1-payload output
trojan in Fig. 5 to describe our method. Insertion of a trojan
in a circuit entails two actions: a) attach, i.e. connecting the
trojan inputs to circuit edges (wires); b) stitch, i.e. breaking
one edge then feeding the left end to the trojan input and the
right end to the trojan output. Note if there is more than one
payload then a corresponding number of circuit edges would
be stitched.

The trojan operates in two modes, normal and trigger.
Normally, the trojan monitors the trigger inputs, while main-
taining a stitch path, in lieu of the broken path RP , going
through the trojan. This has no effect to the normal cir-
cuit operation, i.e. the bit values P and R are equal. Then,
the stitch path is ”triggered” producing a different payload,
meaning the values P and R are not equal, e.g. P = R′.
This is an error that may propagate as a fault to the circuit
output. The key notion of the trojan threat is that the trig-
ger values would occur very rarely to avoid detection during
regular ATPG testing. By trigger frequency f(v) we mean
the frequency of occurrence of the trigger value v under all
possible vectors at the circuit input. Then f(v) should be
very small, possibly 1 but f(v) > 1. Note that exhaustive
testing will eventually produce the trigger value and hence
detect the trojan as circuit stuck-at-fault (s-a-f). However,
ATPG testing may not detect the trojan.

P1q

q2

In
p

u
t

P
rim

a
ry

O
u

tp
u

t

R

S
ti
tc

h

P
ri

m
a
ry

q−Trigger

Payload
Trojan Circuit

Figure 5. Trojan circuit model

A trigger vector is a primary input vector that triggers a
trojan. For a trojan to be effective, in addition to triggering,
the payload error must propagate to the circuit output. A tro-
jan test vector is a trigger vector that propagates the payload
to the circuit output. The set of trojan test vectors is a subset
of the set of trigger vectors.

The problem is to find trojan test vectors that can detect
all trojan effects triggered by rare values. Note, trojans trig-
gered by ”non rare” values should be detected by ATPG test-
ing. Although there are numerous insertion places of trojans
in a circuit, we are interested in most likely target sites to
attach and stitch a trojan. The rules are, assuming trojans
with q inputs and a threshold of fth trigger frequency: rule
1) attach target are all combinations of q edges that attain
one or more bit-values with frequency ≤ fth; rule 2) stitch
targets for payload are all edges having low probability of

1364

fault propagation to the circuit output – in other words, low
observability of the stitched edge with respect to the output.
The rationale for rule 2 is to make the trojan less visible to
ATPG tools.

These rules 1 and 2 are the basis of two procedures that
we propose to handle the trojan threat. The procedures use
a logic and fault simulator, and an ATPG tool. First, we de-
veloped the trojan target analysis procedure to identify all
target sites of a given circuit for q-input trojan insertion To
implement rule 1, the logic simulator accumulates q-bit val-
ues occurring on combinations of q ≥ 1 edges for frequency
thresholds, fth = 0, 1, 2, 3, · · · . The procedure collects
all target sites to attach a q-input trojan with their respec-
tive trigger values and frequencies. Moreover, the procedure
produces for each trigger value its corresponding input trig-
ger vectors of circuit. To implement rule 2, we use a fault
simulator to identify low observability nodes in the circuit
that are candidates for stitching.

At the end of the trojan target analysis procedure we have:
1) a set of Q targets to attach q-input trojans, 2) a set P of
target edges to stitch q-input trojans, 3) the trigger values and
frequencies of each of the Q × P possible trojan circuits, 4)
the input trigger vectors associated with the trigger values for
the trojans.

The second procedure (trojan detection) produces trojan
test vector sets to detect trojans in a circuit. The trojan de-
tection procedure uses an ATPG tool to check whether each
input trigger vector from the target analysis procedure can be
propagated to the circuit output. This way, the set of input
trigger vectors can be further compacted into the smaller set
of trojan triggered vectors.

Note that the target trojan analysis procedure above as-
sumed exhaustive exercising of all 2n input patterns where
n is the number of circuit inputs. However, if n is large, we
may avoid this difficulty by using a suitable pseudorandom
set of input patterns to perform the trojan target analysis.

5. Results

Circuit PI ATPG Trigger Trigger Escape
vectors coverage vectors vectors

c17 5 5 100% 0 2
c432 36 43 0% 6 19
c880 60 36 80.97% 56 38

c1355 41 85 58.54% 135 4
c5315 178 77 71.92% 301 232
c6288 32 29 27.48% 283 148
c7522 207 99 84.03% 602 230

Table 1. Results on Benchmark Circuits

The trojan detection procedures have been implemented
and incorporated in a trojan tool set that includes a logic and
fault simulator and a testability analysis tool. Our trojan tool
set works together with a commercial ATPG tool (Tetramax
from Synopsys). To validate our methods, we experimented
with a number of circuits from the ISCAS85 benchmarks.

Our results are shown in Table 1. Column two is the num-
ber of primary inputs for each of the ISCAS85 circuits de-
scribed in first column. Column three is the number of ATPG
vectors that were generated by Synopsys Tetramax for single
stuck-at faults for each of the circuits prior to any trojan anal-
ysis. Column four shows the Tetramax trigger vector cover-
age percentage of column three for q = 2 and trigger fre-
quency threshold of one (i.e. fth = 1). Thus, trigger vector
coverage is the subset of Tetramax vectors in column three
which trigger a trojan divided by the the total trigger vectors
in column five. This column emphasizes that as expected the
stuck-at coverage is not sufficient for trigger coverage. The
circuit c17 is a trivial circuit which in fact had no rare val-
ues for threshold one, thus the 100% coverage. Column five
is the number of primary input trigger vectors which trigger
the trojan based on random sampling. The last column is the
number of escape vectors which is the number of addition
vectors needed to cover the next threshold level of two. This
gives insight as to how much more effort is required to reach
the next threshold level. However, increasing the threshold
level, makes the trojan more likely to be detected by ATPG.
Threshold one is the most desirable.

6. Conclusions and Future Work

In order to detect any trojan instance by observing the
output logic value, we must trigger it. Thus, generation of
an optimal set of test vectors, which can trigger the trojans
will remain as an important problem. We have presented
comprehensive analysis of the problem and classified trojan
attacks in several broad categories. We have also considered
detection of trojan instances in a circuit using a test genera-
tion approach. Simulation results show that such a technique
can be effective to detect most small combinational trojans,
which can easily evade indirect detection techniques such as
the one using a power signature.

References

[1] D. Agrawal and et al. Trojan detection using ic fingerprinting.
IEEE Symp. On Security and Privacy, pages 296–310, 2007.

[2] D. Hely, F. Bancel, M. Flottes, and B. Rouzeyre. Secure scan
techniques: a comparison. In 12th IEEE International On-Line
Testing Symposium (IOLTS), pages 119–124, 2006.

[3] J. Kumagai. Chip detectives. IEEE Spectrum, 37(11):43–49,
Nov. 2000.

[4] S. Paul, R. S. Chakraborty, and S. Bhunia. Vim-scan: A low
overhead scan design approach for protection of secret key in
scan-based secure chips. VLSI Test Symposium (VTS), 2007.

[5] S. Ravi, A. Raghunathan, and S. Chakradhar. Tamper resis-
tance mechanisms for secure embedded systems. 17th Inter-
national Conference on VLSI Design, 94(2):605 – 611, Feb.
2004.

[6] G. E. Suh and S. Devadas. Physical unclonable functions
for device authentication and secret key generation. Proceed-
ings of the Design Automation Conference (DAC), pages 9–14,
2007.

[7] K. Tiri and I. Verbauwhede. A digital design flow for secure
integrated circuits. IEEE TCAD, pages 1197–1208, 2006.

1365

